Gender and autoimmune diseases

Daniel SERENI

ESIM January 2012

AUTOIMMUNE DISEASES

~ 80 disorders 5 % of population

SLE			
SJOGREN S.	STILL DISEASE	HASHIMOTO THYROIDITIS	
RHUMATOID ARTHRITIS	AUTOIMMUNE DIABETES	OIMMUNE LAMBERT EATON S. BETES	
DERMATOMYOSITIS	MULTIPLE SCLEROSIS	MYASTHENIA	
POLYMYOSITIS	PRIMARY BILIARY RELAPSING POLYCHONDRITIS		
SYSTEMIC SCLEROSIS	ANTIPHOSPHOLIPIDS S.		

Auto-immunity

Genomics and autoimmune Diseases

- > 200 loci associated to AI Diseases
- Genes on the MHC have the strongest effect
- Mutations seem to act on self reactive B and T cells and modify their reactivity
 - Diabetes melitus
 - Immune Polyendocrinopathy X-linked
- (HLA)- DRB1 locus confers susceptibility to Rheumatoid Arthritis

(Cho JH. Et al, NEJM, 365 , 2205-19; 2011 McInnes IB, et al, NEJM, 365, 1612-23; 2011)

Sex ratio

- A majority of autoimmune diseases are more frequent in women
- Lupus SLE
- Sjogren's syndrome
- Hashimoto thyroiditis
- Rhumatoid Arthritis
- Systemic Sclerosis

9 women / 1 man

10 women / 1 man

10 women / 1 man

4 women / 1 man

6 women / 1 man

– Autoimmune diabetes type 1 variable

How to explain female preponderance for autoimmunity?

Environment

Genetic factors

How to explain female preponderance for autoimmunity?

Environment

Ho<u>rmones</u>

Genetic factors

Hormones and autoimmunity

- Presence of steroids receptors on lymphocytes and other immune cells membrane
 - Estrogens alpha receptors (ER)

Estrogens

- enhance Th2 immunological response
- enhance the programmed death (PD1) pathway and modulates autoimmunity (RK Dinesh et al, Autoimmun.rev. 2010)
- have a general positive effect on the production of antibodies including pathogenic antibodies (M.Cutolo, arthritis 2007)

Table 1

Expression of steroid receptors by murine immune cells

Several studies has suggested the expression of progesterone receptors by lymphocytes during pregnancy but it has yet to be proven.

	Estrogen receptors	Androgen receptors	Progesterone receptors
B cells	+	+	-
CD4 T cells	-	-	-
CD8 T cells	+	-	-
Monocytes	+	-	-
Neutrophils	+	-	-
NK cells	+	-	-
Macrophages	-	+	-

AV Rubstov et al, Autoimmun Rev, 2010

Hormones and autoimmunity

- Progesterone and androgens have a general immunosuppressive effect
- A decrease in DHEA / DHEAS levels could have a facilitating effect on autoimmunity
- Prolactin
 - Secreted by pituitary gland but also by immune cells
 - Accelarates onset of lupus in experimental models
 - High blood levels in SLE, Sjogren's S, RA, Polymyositis, Addison disease, Hashimoto's thyroiditis
- The Hypothalamic-pituitary- adrenal axis is involved in immune regulation and cytokines production

Chromosomes

- Sex Chromosomes
 - High rate of circulating leukocytes with a single X chromosome in women with AI diseases.
 - More frequent loss of Y chromosome in men with AI Diseases. (Selmi C. 2008)

Microchimerism

- Fetal microchimerism
 - Long term presence of fetal cells or DNA
 - Scleroderma and Hashimoto Thyroiditis
 - Clinical similarities between GVH disease and AI diseases (KM Adams Waldorf, JL Nelson, Immunol Invest, 2008)

• Maternal microchimerism

- Diabetes in children , neo - natal SLE

Rhumatoid Arthritis

NEJM. 365: 2205-19. 201

Hormones and Rhumatoid Arthritis

- Men with RA have androgens levels below normal range.
- In synovial fluid of RA joints, estrogens levels are above normal range, whereas androgens are lower. These abnormalities could play a role in synoviocytes proliferation
- women with RA experience a clinical improvement during pregnancy.
- On the opposite there is an increase risk of clinical flare after delivery.
- Hench 's isolation of cortisone was based on observation of RA improvement during pregnancy

Pathogenic role of hormones in RA

- Normal pregnancy is associated with a shift in cytokines
 - from Th1 : INF-gamma, TNF –alpha, IL- 12
 - To Th2 : IL 10, IL 4, IL 1 receptor antagonist
- In RA patients,

the increase in cortisol, estradiol and progesterone during the 3rd trimester Is associated with a drop in IL -12 and TNF-alpha levels In parallel with a frequent clinical improvement (Golding et al, Rheum Dis Clin, 2007)

Observed Mean Values for Different Outcome Measures Over Time in Men and Women

Jawaheer.D et al, J.Rheumatol. 2010

Observed Mean Values for Different Outcome Measures over Time among Patients with <u>Complete DAS28ESR4</u> <u>Data at all Time Points (</u>26 men and 80 women)

Jawaheer.D et al, J.Rheumatol. 2010

Radiographic Damage

Jawaheer.D et al, J.Rheumatol. 2010

Jawaheer.D et al. J.Rheumatol. 2010

Sjogren's Syndrome

- Correlation between lower estrogens and testosterone and importance of tissular inflammation
- DHEAS blood levels lower than normal
- Possible pathogenic effect of estrogens deficiency on exocrine glands.
- In mice estrogen deficiency initiates tissue specific apoptosis (Arakaki,R et al;Immunotherapy, 2010, 2; 339-46)

Systemic Lupus Erythematosus

- In most experimental models, the disease is more frequent and more severe in females
- In majority of cases clinical onset occurs between puberty and menopause
- Pregnancy and exogenous estrogens administration can increase autoantibodies levels and trigger clinical flares
- Men with lupus have an androgens / estrogens ratio lower than normal
- ANA in healthy individuals more prevalent in females (29%) than males (17%) (Quan Zen Li et al, Arthr Res Ther, 2011, 13; R38)
- In men, cardiovascular and renal comorbidities are more frequent. (Crosslin KL. Gend Med, 2011)

SLE and Pregnancy

- Risks for the patient
 - Flares are more frequent (Clowse et al, Obstet. Gynecol, 2006)
 - Arterial hypertension
 - Preeclampsia
 - HELLP syndrome
- Risks for the newborn
 - overall 20% miscarriages or stillbirths (Clark et al, J. Rhumatol. 2006)
 - Presence of Antiphospholipids antibodies increases risks of stillbirths
 - neonatal lupus -cardiomyopathy- congenital heart block-
 - maternal anti Ro/SSA activity

Rhumatoid Arthritis and pregnancy

- A prospective study of 140 women with RA
 - during pregnancy
 - 16% had complete remission
 - 66% improved
 - 16% worsened
 - After delivery
 - 77%had more swelling and pain than during pregnancy (Barret et al, JAMA, 1999)
- Preeclampsia may be more frequent in women with RA
- Prematurity and lower birth rates in active RA (Wallenius et al, Arthr Rheum, 2011)
- Pregnancy may have a protective effect due to persisting microchimerism (Guthrie et al, Arthr Rheum, 2010)

Systemic Scleroderma

Risks during pregnancy

- renal crisis
- cardio-pulmonary complications
- miscarriages
- premature and small infants

immunosuppressive drugs during pregnancy

no risk

no risk

low risk

low risk

low risk

- Corticosteroids
- Hydroxychloquine
- Sulfasalazin
- Ciclosporin
- Azathioprine
- IV Immunoglobulins low risk

TO BE AVOIDED

- NSAIDs
- CYCLOPHOSPHAMID
- METHOTREXATE
- LEFLUNOMIDE
- MYCOPHENOLATE MOFETYL
- ANTI TNF ALPHA
- RITUXIMAB

Estrogens use and autoimmune diseases

 Estrogens must be used with caution in patients at risk for vascular thrombosis
– SLE, SAPL

• Estrogens use for oral contaception in RA patients

 Is associated with benificial functional outcome in women with RA

(Camacho et al, Arthr. Rheum, 2011)

- May have a protective effect on the onset of RA
 - (Jorgensen et al, Ann Rhem Dis, 1996)

Conclusions

- Care of patients with autoimmune diseases during pregnancy
 - Information and planing highly recommanded
 - Pregnancy followed by an experienced obstetricain
 - Close followup during and after pregnancy by the internist
- Many immunosuppressive drugs have teratogenic effects
- The use of estrogens as contaceptive or post menopause
 - is possible in RA
 - must be discussed in a case by case approach in other diseases

Conclusions

- Gender differences in prevalence and severity of autoimmune diseases seem related to the interactions between hormonal balance and the immune system.
- The impact of the hormonal factor on immunity is complex and different in each autoimmune disease.
- To date, changes in hormonal status by therapeutical interventions have not shown substantial efficacy in clinical trials.
- Fetal microchimerism may be important in modulating the immune response
- A better knowledge of the physiopathological pathways involved in gender differences would benefit to all patients.
- Gender may be an important criteria for a tailored therapeutic approach.