

Identification and treatment of chronic kidney disease

EFIN Saas Fee January 2012

- vi er til for dig

Objectives

- Glomerular filtration rate
- Background CKD
- Definition of chronic kidney disease
- Epidemiology
- Prevention
- When to refer to a renal unit

• Measurement with a reference method:

- Inulin (gold standard)
- 51Cr-EDTA
- Iohexol
- Iothamalate

Estimation with a formula

- MDRD
- CKD-EPI

Creatinine clearance IS NOT the same as GFR! Cockroft-Gault formula estimates <u>creatinine clearance.</u>

Measurement of GFR

- Expensive 300-500 euros
- Time consuming : 5 hours
- Limited ressources at clinical physiology departments
- Results are expressed as:
 - ml/min (absolute values)
 - ml/min per 1.73m²

Who gets measured GFR?

- Cancer patients before and after cisplatin or carboplatin based treatments
- Some Diabetics
- Some CKD patients
- Living Kidney donors

What about the rest?

- E-GFR
 - MDRD
 - CKD-EPI

Estimated creatinine clearance

- Cockroft Gault formula
- Measured creatinine clearance in a 24 hour urine collection

GFR estimation formulas

- MDRD:
 - Since 1999
 - Based on a CKD population (sick patients)
 - 1628 patients with a mean GFR 39,8 ml/min per 1.73m²
 - Perfomance is validated whenever GFR is less than 60 ml/min per 1.73m²
 - Less precise whenever GFR is > 60 ml/min per 1.73m² (underestimation of kidney function)
 - The most used version is MDRD 4 Variable
 - Serum creatinine
 - Age
 - Gender
 - Ethnicity

GFR estimation formulas

- CKD-EPI:
 - Since 2009
 - Based on a larger population : N= 8254
 - Median measured GFR: 68 ± 40 ml/min per 1.73m²
 - Performance is better in healthy populations than MDRD, less bias at higher levels of GFR
 - Less patients are classified as having GFR less than 60 ml/min per $1.73m^{\texttt{2}}$

Impact of estimation formula

- Cheap
- Readily worldwide available (internet)
- Fast (10 seconds)
- Raised awareness of CKD
- Possibility of use in large epidemiology studies
 - CKD prevalence and incidence
- Misclassification?
- Labelling healthy people as sick?
- Results are expressed as:
 - ml/min per 1.73m²

Web based facilities

- <u>www.kidney.org</u>
- <u>http://www.kidney.org/professionals/kdoqi/gfr_calculator.cfm</u>

- Creatinine has to be stable through min 3 months (requires at least 2 creatinine measurements with a variation less than 15%)
- Not to be used in acute kidney failure
- Diabetic ketoacidosis
- Renal replacement therapy
- Children: other formula
- Pregnancy
- Amputation
- Treatment with trimethoprim, cephalosporins, cimetidine or methyldopa
- Increased values of protein, glucose and bilirubin (interference with creatinine measurements Jaffé method)

- MDRD and CKD-EPI are only reliable in stable kidney function:
 - Stable creatinine > 3 months
- MDRD and CKD-EPI underestimate GFR when GFR is > 60 ml/min per1.73 m²
- MDRD and CKD-EPI are not accurate enough in extreme body sizes
 - Underestimation of GFR in obesity
 - Overestimation of GFR in underweight patients
- Results are given as ml/min per 1.73 m²

Body Surface Area estimation

- Based on Du Bois and Du Bois formula fra 1916, based on measurements of 9 people!
- Not 100% reliable but most used worldwide
- Standard measured 1.73m²
- Populations have grown!
 - USA: mean BSA 2.22 m²
 - Germany : 1.97 m² etc etc
 - Worldwide: 1.92m²?

Impact BSA in GFR

What is the problem?

- Hyperfiltration in obese and diabetics:
 - 60 years man, height 189, weight 145 kg, BSA 2,66, creatinine : 60 μmol/L (0,68 mg/dl), CKD-EPI eGFR: 104 ml/min per 1.73m², men absolut CKD-EPI eGFR = 160 ml/min
 - After gastric by-pass: weight : 85 kg, BSA 2.12, CKD-EPI eGFR: 104 ml/min per 1.73m² men absolut CKD-EPI eGFR : 128 ml/min

- Conversion of BSA indexed GFR values to absolute GFR values:
- Absolute GFR = (Indexed GFR x Patients BSA)/ 1.73m² = ml/min

How do we obtain BSA?

• Du Bois-Du Bois formula:

BSA (m²) = 0.007184 x height (cm)0.725 x weight (kg)0.425

Comparison of different populations

- Individual patient follow-up
- Drug dosing
- Kidney donors assessment

Background CKD

- High prevalence
- Relatively unknown problem until too late
- High mortality due to cardiovascular diseases
- High risk Stroke
- High risk vascular calcification (different from atherosclerosis)
- Very few progress to end stage renal disease (ESRD):

THEY DIE BEFORE REACHING TREATMENT NEED!

Diseases	US Prevalence N (%)
CKD	23,000,000 (11.6%)
Hypertension	65,000,000 (32.3%)
Diabetes	20,600,000 (9.6%)
CVD	71,300,000 (34.2%)

WORLD KIDNEY DAY 2008

"Chronic Kidney disease is common, harmful and treatable"

Definition of chronic kidney disease REGION SJÆLLAND KØGE SYGEHUS - vi er fil for dig

- Decreased GFR
- Kidney damage:
 - Proteinuria
 - albuminuria
 - Haematuria
 - Anatomical damage (Polycystic kidney disease, only one kidney etc)

CKD classification 2010

Classification by severity							
Stage	Description	GFR ml/min/1.73m ²	Related terms	Classification by treatment			
1.	Kidney damage with normal or ↑GFR	≥90	albuminuria, proteinuria, hematuria				
2.	Kidney damage with mild↓GFR	60 - 89	albuminuria, proteinuria, hematuria				
3.	Moderate ↓GFR	30 – 59	chronic renal insufficiency, early renal insufficiency	T if kidney transplant, recipient			
4.	Severe ↓ GFR	15 – 29	chronic renal insufficiency, late renal insufficiency, pre-ESRD				
5.	Kidney failure	< 15 (or dialysis)	renal failure, ureamia, end- stage, renal disease)			
				D if dialysis (hemodialysis, peritoneal dialysis)			

Albuminuria

• Spot albumin creatinin ratio

- >30mg/g microalbuminuria
- >300 mg/g proteinuri

Composite ranking for relative risks by GFR and albuminuria (KDIGO 2009)			Albuminuria stages, description and range (mg/g)					
			A1		A2	A3		
			Optimal and high-normal		High	Very high and nephrotic		
				<10	10–29	30–299	300- 1999	≥2000
	G1	High and optimal	>105					
			90-104					
GFR	G2	Mild	75–89					
stages, descrip-			60-74					
tion and range	G3a	Mild- moderate	45–59					
(ml/min per 1.73 m ²)	G3b	Moderate- severe	30-44					
	G4	Severe	15–29					
	G5	Kidney failure	<15					

Why this change in classification?

Cardiovascular mortality

REGION SJÆLLAND Køge sygenus - vier til for dig

Normoalbuminuria Microalbuminuria Macroalbuminuria

All-Cause Mortality and Proteinuria (*At same eGFR strata*) *Taiwan Health Management Institution Study; Lancet 2008*

Screening of CKD

- Age > 60
- Diabetes
- Hypertension
- Family history CKD

How to screen?

- eGFR over a periode of at least 3 months
- Urin dipstick min twice :
 - Albuminuria
 - If positive
 - spot urine alb-creat ratio (remember to measure creatinine in serum also)
 - If very positive: proteinuria
 - Consider 24 hour urine collection for protein measurement
 - Hæmaturia
 - Urine microscopy
 - Helps with differential diagnosis between bleeding from the urinary tract (urological problem) and bleeding in the glomeruli (glomerulonephritis = nephrology problem)
 - erythrocytes versus cylinders

Risk factors CKD

- Hypertension
- Diabetes
- Low birth weight (small kidneys, less nephrons, more hyperfiltration?)
- Obesity: hyperfiltration
- Heart insufficiency
- High uric acid
- Hepatitis C infektion
- Periodontal disease...

Special groups at risk of CKD

- Hepatitis C patients
- Non alcoholic steatosis hepatitis: NASH
- Cirrhosis
- Heart disease
 - Ischemia (Use of Troponin T)
 - Endocarditis
 - Heart insufficiency (use of BNP)
- Hypothyroidism
- Obesity etc

CKD Prevention

- Control af hypertension
- Control diabetes
- Early treatment urinary tract infections
- Prevention/ treatment of kidney stones
- Reduction of albuminuria with med Ace-inhibitors/ ARB´S (protection kidneys)
- Weightloss
- Salt reduction
- Treatment of CKD high risk condition etc

When and who needs to be referred?REGION SJÆLLAND

- vier til for die

- Not everyone with CKD needs special nephrology care
 - Older patients with diminished eGFR 60-45 ml/min without albuminuria
 - Low risk of progression to ESRD
- Early referral if
 - Proteinuria > 1 gram per day (24 h urine collection)
 - Proteinuria and haematuria

Regardless eGFR!

- Consider referral if there are CKD complications
 - Nephrogen anæmia: needof EPO?
 - Calcium-phosphate-PTH disorders: need of D vitamin/ phosphate binders?
 - Uncontrollable hypertension
 - Oedema : nephrotic syndrome?
 - etc etc

NEPH SAP: Timing of referral

- Patients who receive care by nephrologists before developing ESRD have better outcomes
- in general more nephrologist contact is better for the patient
- patients continue to be referred late and present with CKD related complications

- Health system characteristics associated with late referral:
 - Lack of knowledge about the appropriate timing of referral (referring physician)
 - Absence of communication between referring physicians and nephrologists

- Retrospective study Rochester, NY, 204 patients
 - Referrals with GFR < 15 ml/min : late referral
 - Referrals with GFR> 15 ml/min : early referral

• 22% were referred late

- Non diabetic renal disease and greater comorbidities were significantly associated with late referral
- Late referral associated with less permanent vascular access.
- <u>Late referrals experienced a two fold increased risk of death in</u> <u>1 year (18% versus 9% but NS)</u>

What can you do whilst waiting? REGION SJÆLLAND

- Check up list of medications
 - Dose reduction of kidney excreted medication
 - Allopurinol
 - antibiotics: cefuroxime, penicillin, ciprofloxacin etc
 - Low weight heparin (Fondaparinux is better)
 - Avoidance of:
 - Gentamycine
 - Vancomycine
 - NSAIDS
 - Metformin (eGFR less than 30 ml/min)
 - Thiazides (eGFR less than 30 ml/min)
 - Warfarin? Increase risk vascular calficification
 - Consider use of ACE inhibitors or ARB´S if albuminuria is present (not in combination)
 - Treatment of dyslipidaemia

What can you dou whilst waiting?

REGION SJÆLLAND Køge sygehus

- vi er til for dig

- Ultrasound kidneys
- Contrast nephropathy prevention
- Identify treatable causes such as:
 - Post obstructive kidney disease
 - Rectal examination
 - PSA ...
 - JJ catheter?
 - Drug toxicity
 - Kidney stones etc
- Identify severe disease:
 - Lupus nephropathy
 - <u>Myelomatosis</u>
 - Minimal change disease
 - Polycystic kidney disease
 - Glomerulonephritis etc

What is the point?

- It reduces cardiovascular mortality
- It reduces progression to ESRD
- It avoids dialysis need
- IT HELPS YOUR PATIENTS
- IT HELPS YOUR HOSPITAL
- IT HELPS YOUR COUNTRY'S ECONOMY

Summary

- Beware of e-GFR limitations
- Use absolute GFR ml/min
- Remember to screen for CKD in relevant groups
- Death is a more likely outcome than ESRD at all stages CKD
- Slow progression with ACE-inhibitors/ARB's
- Consider early referal, specially in young patients

My hospital...

Any Questions?

Thank you for your attention!

Belén Redal-Baigorri Specialist in internal medicine and nephrology Specialist in general practice

