

Acute respiratory failure : a case report

Jiri Plasek

Clinic of Internal Medicine, University Hospital Ostrava Czech Republic

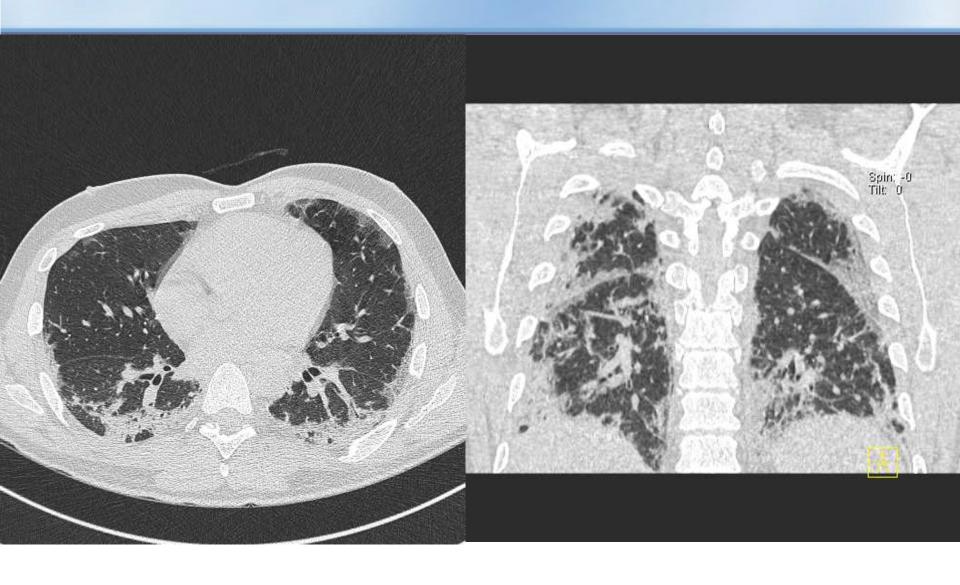
Initial ED presentation

- □ 45 yr old, caucasian man, former hockey player
- Moderate dyspnoea, right hemithorax inspiratory pain
- 3 weeks prior to ER: joint swellling, fever, muscle weakness, unspecified fatigue
- □½ yr prior to ER: post-exertional dyspnoea
- Unremarkable family history, medication 0, no environmental/occupational risk
- □ Physical examination: velcro-like crackles, TT=37.2 °C, pO₂=90%, mild proximal muscle weakness
- Lab.: ↑liver enzymes (AST 17x), creatinkinase (20x), myoglobin (12x), ↑WBC (19*109,neutrophilia),CRP (2x)

Chest x-ray

Right basal pneumonia?

ATB


Connective tissue dissease?

- ELISA IgM RF (127.37 IU/ml, N 1-25), mild + anti-Ro-52 (Western blot)
- Neurological exam: decreased muscle strenght (proximal 3/5, distal 4/5)
- Electromyography:signs of a diffuse myopathic pattern
- no inflammatory infiltration from muscle biopsy
- myositis? Solu-medrol pulse therapy (cumulative dose 3g)
- After 2 weeks: decreased levels of WBC, CK, CRP, myoglobin + subsiding fatigue/muscle weakness

Dyspnoea etiology?

- Saline induced sputum:negative both for bacteria and fungi.
- A full panel of respiratory viruses serology analysis proved noncontributory
- ECHO: no signs of systolic/diastolic dysfunction or valvular disease
- Oncomarkers: AFP 13 U/ml (range:0-11), CA 19-9: 3.8 U/ml (range:0-37), CEA 11.7 ug/l (0-5), NSE 30.6 ug/l (range:0-12.5), PSA 0.24 (range: 0-5), SCCA 0.4 ug/l (range 0-1.5)
- Spirometry: VC max=1.2 I, FEV1=1.1 I, Tiffenau index= 0.95

High resolution computed tomography

New diagnosis: Idiopathic pulmonary fibrosis

- 2 major (abnormal pulmonary function+bibasilar reticular abnormality) ATS/ERS criteria were satisfied
- 2 minor (insidious onset of exertional dyspnoea + duration > 3 months) ATS/ERS criteria were satisfied
- BAL (after corticotherapy): Macrophages: 21,7%, Granulocytes: 65%, Lymphocytes: 11,9%, Eosinophiles 0,7%.
- Imunophenotype: CD4/CD8= 0,85, CD3 80%, CD4 30%, CD8 36%
- Therapy: acetylcystein 3x600mg/daily, Prednisone 1mg/kg/daily, Azathioprine 50mg/daily

Sudden respiratory failure

- Peripheral pulse oximetry (PPO): 65%
- Blood gas: pH 7.528 (N:7.35-7.45), pCO2 4,61kPA (N:4.7-6.1), pO2 6,79 kPA (N: 11.04-14.36)
- Non-invasive ventilation: PS 15cm, PEEP 6, FiO2 90%, PPO 78%
- Invasive mechanical ventilation: pressure-synchronized intermittent mandatory ventilation, inverse I/E ratio, Peak insp pressure 30 and PEEP 10 cm H₂0, tidal volume 5-8ml/kg, PPO up to 80%, pH 7.318, PO2 8.02 kPA, pCO2 8.87kPA
- V-v ECMO: 3500 rpm, with blood flow from, 3,5 lpm to 4,5 lpm, gas flow through the gas blender 8 lpm with oxygen fraction 1.0. Ventilator settings were: tidal volume 5 ml/kg, oxygen fraction 0.5, pressure plateau, 25 cm H₂O, PEEP 10 cm H₂O
- Predominantly right heart, multi-organ failure, death *DOI 10.5507/bp.2011.039*

Histological pattern

DOI 10.5507/bp.2011.039

FIGURE 2. Histological demonstration of lung tissue a) with features of diffuse alveolar damage, typical hyaline membranes; part of the alveolar septa with fibroblastic proliferation and patchy alveolar septal infiltrates of mononuclear cells b) with fibroblast foci, usual interstitial pneumonia appearance, spindle-sha ped cells in oedematous stroma c) with locus of bronchioalveolar carcinoma d) with locus of bronchioalveolar carcinoma in fibrotic terrain labelled immunohistochemically for cytokeratin 7 as marker of malignant proliferation.

Haematoxylin-eosin staining, 200x magnification, Olympus DP70

Definitive diagnosis

- Clinical: dyspnea > 3 months, fatigue, muscle weakness, respiratory failure
- Radiological: dense fibrosis, honeycombing, GGO
- Histological: usual interstitial pneumonia+diffuse alveolar damage, + diffuse/multilocular growing bronchoalveolar carcinoma
- Acute interstitial pneumonia (formerly Hamman-Rich syndrome) in idiopathic pulmonary fibrosis with bronchoalaveolar carcinoma + paraneoplastic myositis

Idiopathic pulmonary fibrosis/Lung cancer

- 67% of IPF patients are at increased risk of lung cancer (LC)¹
- 21% pacients with LC have had fibrotic interstitial changes at autopsy²
- Smoking and male sex are risk factors for LC development in IPF patients³
- Confirmed CK and myoglobin elevation in epitelial malignant tumours^{4,5,6}
 - 1. Aubry et al. *Mayo Clin Proc.* 2002 Aug;77(8):763-70
 - 2. Meyer EC, Liebow AA. Cancer. 1965;18:322-351
 - 3. Park J et al *Eur Respir J*. 2001 Jun;17(6):1216-9
 - 4. Wang HC, Lu JY, Ting YM. Zhonghua Yi Xue Za Zhi 1995;55(3):270-3.
 - 5. Lee BI, Bach PM, Horton JD, Hickey TM, Davis WA. Clin Cardiol. 1985 Apr;8(4):233-6.
 - 6. Flonta SE, Arena S, Pisacane A, Michieli P, Bardelli A. Am J Pathol. 2009;175(1):201-6

Take home message

- Reduced vital capacity + velcro-like crackles should lead to thorough diagnostic work-up even if x-ray appears normal
- IPF is a risk factor for lung cancer
- Elevation of CK,myoglobin in IPF patients should alert clinicians to probable LC
- Elevation of rheumatological markers may indicate malignant proliferation
- Diffuse growing bronchoalaveolar carcinoma may be hidden under IPF clinical-morphological appearance
- Precaution imunosupressive therapy in histologicaly unproved dg, where cancer was not excluded

Thank you for your attention...

Plasek J, Dvorackova J, Jahoda J, Trulikova K, Mokosova R, Danek T, Hrabovsky V, Martinek A. Acute interstitial pneumonia (Hamman-Rich syndrome) in idiopathic pulmonary fibrosis and bronchoalveolar carcinoma: a case report. Biomed Pap Med Fac Univ Palacky 2011;155(4):289-293 DOI 10.5507/bp.2011.039